Metakrilik Asit Aşılı Süperparamagnetik P(GMA-MMA) Iyon-Değiştirici Mikrokürelerinin Tersinir Enzim Immobilizasyonunda Kullanım İlanı

Meltem Yılmaz, Gülay Bayramoğlu, Ayşegül Ülkü Metin, M. Yakup Arica

Gazi Üniversitesi, Biyokimyasal İşlemler ve Biy omateryal Araştırma Laboratuvarı, 06500 - Teknikokullar, Ankara

Kırkkale Üniversitesi, Fen Edebiyat Fakültesi, Kimya Bölümü, Yahşihan, Kırkkale

meltemyilmaz@gazi.edu.tr

Günümüzde, araştırmacılar hücre ayrımı, enzim immobilizasyonu ve protein saflaştırılması gibi birçok biyoteknoloji ve medikal alanlardaki uygulamalarından dolayı Fe₃O₄ partiküllerinin enkapsül edildiği manyetik özelliklere sahip materyallerin sentezlenmesine ilgi duymaktadır [1,2]. Özellikle, yüksek sek manyetik cevaba sahip, süper paramanyetik özellikte polimerik partiküllerin kullanımı, onun sollarında araştırmacıların ilgi odağı olmuştur [3]. Çalışılmamızda, yeni manyetik özellik kazandırılmış akrilik kökenli iç içe (ion-değiştirici) destek materyalleri hazırlanmıştır. Bu amaç doğrultusunda, manyetik poli(glisidimetakrilat-ko-metilmetakrilat), m-poli(GMA-ko-MMA), polimerik kürelerin süphesiz polimerizasyonunun hızlaştırılması. Manyetik poli(GMA-ko-MMA) mikrokürelerine metakrilik asit (MAc) aşi kopolymerizasyonu amonyum persülfat başlangıçlı reaktifte, serbest radikal polimerizasyon yöntemi ile gerçekleştirildi. Bu yolla, manyetik poli(glisidimetakrilat-ko-metilmetakrilat)-g(metakrilik asit), iyon-değiştirici mikroküreleri elde edildi.

Polimerizasyon verim ş58 o larak belirlenerek ve en yüksek boyoyu dönüşümünün gözlenidigi 75-150 μmDoingminarina sahip olan manyetik mikroküreler, aşı kopolymerizasyonu ile fibril yapida polimer aslanmasında, optimum metakrilik asit konsantrasyonunu 0.8 mol/L olarak belirlendi. Manyetik kürelerin aslanan metakrilik asit in erişilebilir karboksul gruplarını miktar potansiyometrik titresyon yöntemi ile 13.46 mmol/g olarak belirlendi. Manyetik mikrokürelerin toplam yüzey alanı ve gözene hacmi aslanmadan önce ve sonra sırasıyla yaklaşık olarak 7.45 ve 2.44 m²/g ve 1.1x10⁻⁶ ve 1.3x10⁻⁶ cm³/g olarak belirlendi. Sentezlenen mikrokürelerin süperparamanyetik özelliği ESR ve Mössbaur spektroskopisi ölçümleri ile doğrulandı. Tripins enzimi m-poli(GMA-ko-MMA)-MAc kürelerine adsorpsiyon yoluyla immobilize edildi. Enzim adsorpsiyonuna sistem parametrelerinin (başlangıç tripsin konsantrasyonu, ortam pH ve sıçaklığı) etkisi ve immobilize enzimin aktivitesindeki değişim belirlendi. Manyetik kürelerin metakrilik asit aslanmasını sonucu, tripsin enziminin adsorpsiyon kapasitesinin yaklaşık olarak 62.8 kat arttığı gözlandi. Sonuçlar, protein ile iyon-değiştirici destek arasında elektrostatik etkileşimlerin baskın olduğunu ve adsorplanan tripsin enziminin aktivitesinde kayıp olmaksızın tekrar kullanılabileceğini gösterdi. Serbest enzim için optimum aktivite pH 7.5’dedir gözlenenir, immobilize enzim için optimum pH değeri yaklaşık 8.5 olan alkali bölgeye kaydırdı gözlandı. Serbest ve immobilizeenzim için elde edilen sıçaklık profilinden pomuk aktivite sırasıyla 40 ve 45 °C olarak belirlendi. Ayni depolama koşulunda, sezik haftalık sürede immobilize tripsinin aktivitesinde %39’lık bir azalma kaydedilirken dört hafta süre içerisinde serbest enziminin aktivitesini %89 oranında kaybettiği belirlendi. Belirlenen optimum adsorpsiyon koşullarında manyetik poli(GMA-ko-MMA)-g-MAc mikrokürelerine immobilize edilen tripsin enziminin peptit sentezinde kullanılabilişi ve verimliliği iki farklı model protein kullanılarak HPLC yardımıyla belirlendi.

Kaynaklar: