The unsaturated esters of cyclic carboxylic acids on its scientific and practical significance attract researchers' attention. They are widely used in polymer, paint and varnish industry as the monomers, solvents and plasticizers of the polymer materials and also as the antimicrobial substances, anticorrosion additions to lubricants, corrosion inhibitors, and so on [1]. Continuing investigations in this direction [2,3], in this work the vinyl esters of cyclic carboxylic acids have been synthesized and their properties have been investigated. As a result of the carried out investigations it has been found out that the cyclic monocarboxylic acids interact with vinylacetate in the presence of mercury acetate and etherate of trifluorboron and the corresponding esters with yield of 70-80% on the following scheme are formed:

\[
R - COO(CH_2)_n COOH + CH_3COOCH = CH_2 \xrightarrow{BF_3 \cdot O(C_2H_5)_2} Hg(OOCH_3)_2 \]

\[
\rightarrow R - COO(CH_2)_n COOCH = CH_2 + CH_3COOH
\]

\(n=1,2; \; R=\) naphthene radical.

The structure of the synthesized unsaturated esters has been confirmed by the spectral methods of IR- and PMR-spectroscopy.

It has been proved that the synthesized esters are very reactive compounds and can be widely used in organic synthesis. In particular, it has been known that they undergo the reaction of hydrosilylation, diene condensation, epoxidation with formation of new derivatives.

**Keywords:** carboxylic, vinyl esters, vinylacetate, etherate of trifluorboron

**REFERENCES**

